Colorful Masters Of Glass Art

We’ve mentioned him before: Dale Chihuly, but along with his talent there are many other incredible glass artist to inspire us with their sense and taste of color.

Chihuly, together with Harvey Littleton, Dominick Labino and Marvin Lipofsky have been credited with starting the studio glass movement in the United States by creating small-scale furnaces for the use of glass as an artistic medium. The other artist featured, Bob Crooks, is perhaps the best known glass blower in the UK at present. Each of these artist have mastered their craft over long careers as prominent glass makers and their work continues to be an inspiration today.

Colors in Glass

Colors in glass may be obtained by addition of coloring ions and by precipitation of finely dispersed colloides (such as in “ruby gold”, white tin oxide glass, red “selenium ruby”). Ordinary soda-lime glass appears colorless to the naked eye when it is thin, although iron oxide impurities produce a green tint which can be viewed in thick pieces or with the aid of scientific instruments. Further metals and metal oxides can be added to glass during its manufacture to change its color which can enhance its aesthetic appeal. Examples of these additives are listed below:

Dale Chihuly








  • Iron(II) oxide may be added to glass resulting in bluish-green glass which is frequently used in beer bottles. Together with chromium it gives a richer green color, used for wine bottles.
  • Sulphur, together with carbon and iron salts, is used to form iron polysulphides and produce amber glass ranging from yellowish to almost black. In borosilicate glasses rich in boron, sulphur imparts a blue color. With calcium it yields a deep yellow color.
  • Manganese can be added in small amounts to remove the green tint given by iron, or in higher concentrations to give glass an amethyst color. Manganese is one of the oldest glass additives, and purple manganese glass was used since early Egyptian history.
  • Manganese dioxide, which is black, is used to remove the green color from the glass; in a very slow process this is converted to sodium permanganate, a dark purple compound. In New England some houses built more than 300 years ago have window glass which is lightly tinted violet because of this chemical change; and such glass panes are prized as antiques.

Marvin Lipofsky

Wikipedia: Marvin Lipofsky








  • Selenium, like manganese, can be used in small concentrations to decolorize glass, or in higher concentrations to impart a reddish color, caused by selenium atoms dispersed in glass. It is a very important agent to make pink and red glass. When used together with cadmium sulfide, it yields a brilliant red color known as “Selenium Ruby”.
  • Small concentrations of cobalt (0.025 to 0.1%) yield blue glass. The best results are achieved when using glass containing potash. Very small amounts can be used for decolorizing.
  • Tin oxide with antimony and arsenic oxides produce an opaque white glass, first used in Venice to produce an imitation porcelain.
  • 2 to 3% of copper oxide produces a turquoise color.
  • Pure metallic copper produces a very dark red, opaque glass, which is sometimes used as a substitute for gold in the production of ruby-colored glass.
  • Nickel, depending on the concentration, produces blue, or violet, or even black glass. Lead crystal with added nickel acquires purplish color. Nickel together with small amount of cobalt was used for decolorizing of lead glass.

Dominick Labino

wikipedia: Dominick Labino



Harvey Littleton

wikipedia: Harvery Littleton
more images


  • Chromium is a very powerful colorizing agent, yielding dark green or in higher concentrations even black color. Together with tin oxide and arsenic it yields emerald green glass. Chromium aventurine, in which aventurescence was achieved by growth of large parallel chromium(III) oxide plates, was also made from glass with added chromium.
  • Cadmium together with sulphur results in deep yellow color, often used in glazes. However, cadmium is toxic.
  • Adding titanium produces yellowish-brown glass. Titanium is rarely used on its own, is more often employed to intensify and brighten other colorizing additives.
  • Metallic gold, in very small concentrations (around 0.001%), produces a rich ruby-colored glass (“Ruby Gold“), while lower concentrations produces a less intense red, often marketed as “cranberry“. The color is caused by the size and dispersion of gold particles. Ruby gold glass is usually made of lead glass with added tin.
  • Uranium (0.1 to 2%) can be added to give glass a fluorescent yellow or green color. Uranium glass is typically not radioactive enough to be dangerous, but if ground into a powder, such as by polishing with sandpaper, and inhaled, it can be carcinogenic. When used with lead glass with very high proportion of lead, produces a deep red color.
  • Silver compounds (notably silver nitrate) can produce a range of colors from orange-red to yellow. The way the glass is heated and cooled can significantly affect the colors produced by these compounds. The chemistry involved is complex and not well understood.

Bob Crooks



More Inspiring Images of Glass Art

Creativity+ Timothy K Hamilton


Creativity+ Timothy K Hamilton





Kato Jaworski



Foto Twerp


Thomas Hawk

Check out our post about stained glass

Source: wikipedia: glass color

Images from artist pages unless otherwise noted

Author: evad
David Sommers has been loving color as COLOURlovers' Blog Editor-in-Chief for the past two years. When he's not neck deep in a rainbow he's loving other things with The Post Family (, a Chicago-based art blog, artist collective & gallery.